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A B S T R A C T

Fog Computing can enhance users’ quality of service, particularly when countless users spread
around the globe to access the same Cloud resources. We present a set of collaboration me-
chanisms between Fog and Cloud computing resources to conduct simulation experiments. A user
creates an experiment on a Fog server (with a model attached to it) without worrying where and
how the simulation will be executed. Once a simulation starts, the experiment reach servers with
simulation environments that can execute the model and then needs to select the best servers to
perform the actual simulation. We introduce the concept of Virtual Experiments (VE) to decouple
M&S environments specifics from the general experiment framework, providing interplay pro-
cessing units between users and simulation servers. In addition, we present a Fog/Cloud scalable
architecture, and discuss how the M&S capabilities are advertised, structured in pools, dyna-
mically discovered, and selected to simulate. As a proof of concept, we built our concrete private
Clouds and Fogs based on OpenStack to demonstrate the proposed ideas using various Fog and
Cloud physical, deployment and computing capabilities.

1. Introduction

Cisco introduced the concept of Fog computing in 2012 [6]. It is defined as a “Cloud close to the ground” [6], meaning that we
want to move part of the Cloud computation closer to the users. In fact, as suggested by surveys like [18,20,32], Fog computing utilize
users nearby resources that are usually idle off peak hours. Fog computing has also been linked to the concept of the Internet of
Things (IoT) [6,32]. As IoT protocols provide means to connect all kind of devices, Fog is a promising idea to place some computation
resources near these countless devices, allowing Fog servers to handle some of the processing. Users may be served by their Fog local
resources, if possible; otherwise, the Fog servers need to get those services from somewhere else (for instance, the Cloud).

The collaboration mechanisms between Fog and Cloud servers play a key role on the overall services provisions, and we thus
present advanced collaboration mechanisms between Fog/Cloud servers to perform simulation experiments, which can enhance
Modelling and Simulation (M&S) technology. We propose mechanisms to enhance the Fog/Cloud collaboration so that users can
create and manipulate their simulation experiments via Fog servers. We have the following practical requirements:

1 The software architecture should be scalable. The collaboration mechanisms of the overall architecture should be independent of
any increasing number of Fog or Cloud computing resources. This includes the exchanged messages between servers. Our solution
to this requirement is to organize all the servers hierarchically. We place Fog servers (i.e. users’ entry points) on the top of the
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hierarchy; consequently, they can reach all information via their children servers.
2 Fog servers should detect and discover M&S resources change dynamically (i.e. knowledge discovery). This needs to be done with
the assumption that servers can join or leave the overall architecture at any time.
Our solution is that when a server joins the architecture, it advertises its capabilities to its parents. The resource pools are then
organized along the way in the hierarchy until they reach the Fog servers on top. Servers leaving the architecture are also
managed in the same way, but in top-down direction instead.

3 Simulation servers are not equal and may support different M&S capabilities. This means that some simulation models may not be
able to execute on some servers. The Fog servers should know how to reach compatible resources. To do this, we group similar
M&S resources together in pools. This makes matching models to simulation environments a trivial task by Fog servers.

In our previous research, we introduced the RESTful Interoperability Simulation Environment (RISE) [4] middleware. RISE
provides a RESTful API for integrated simulation environments, particularly DEVS-based tools [28]. RISE currently supports different
versions of CD++ like the distributed CD++ [3], which allows different distributed partitions to execute the simulation. We reused
two RISE components (1) the RESTful WS framework API to be able to communicate through the Web using REST style and (2) The
access to the DEVS tool via the REST API to run simulation experiments.

As a proof of concept, we built Fogs and Clouds from privately owned computing resources. We used OpenStack [19], which
provides Computing, Storage and Networking virtualization services. OpenStack services are interoperated using RESTful WS.

To this end, while meeting the previously stated requirements, the main contributions of the presented research here (with respect
to other existing platforms) can be summarized as follows:

(1) Development of algorithms and a full-fledged Fog/Cloud infrastructure to conduct simulation experiments. This includes Fog/Cloud
collaboration mechanisms to allow client devices to create and manipulate their experiments on nearby Fog nodes. When a client
starts the simulation, the experiment (i) needs to discover the simulation environments that can execute the simulation, and then
(ii) out of those discovered resources, select the best resources (in our case, the least loaded servers that advertised the M&S
resources). To enable experiments to perform these two steps, the heterogeneous M&S resources are dynamically discovered and
organized in form of homogeneous resources Pools, making resources discovery a trivial task by experiments. Further, those Pools
are dynamically being updated with information (e.g. load) to improve the selection of resources to execute the simulation. Once
the simulation starts execution, the type of simulation (e.g. parallel, distributed, real-time, etc.) depends on the used simulation
environment and experiment settings.
This workflow to conduct simulation experiments over Fog/Cloud is a completely novel approach. In contrast, existing M&S
platforms perform simulation by directly connecting the client devices with the VMs that are previously known to be able to run
the simulation. This makes client devices aware of the centralized cloud VMs capabilities and locations. Further, this prevents
clients from taking advantage of organizations’ local mini-clouds (i.e. Fogs).

(2) New Virtualization layers at the level of experiments and M&S resources. Having this new layer is important to hide cloud details (e.g.
VMs) from simulation experiments, decoupling M&S resources and experiments from Fog/Cloud details. The following layers are
defined: (a) experiments layer (to setup and execute simulations), (b) M&S resources layer (to discover and select M&S resources
while hiding VMs details from experiments), (c) VMs layer (to host M&S resources and hide the hardware details), and (d)
physical hardware. Once a VM is launched, it advertises its M&S capabilities to the upper layer, allowing M&S resources to be
organized and made available to experiments. In turn, when an experiment wants to execute a simulation, it goes through the
M&S resources to discover and select suitable M&S resources to carry out the simulation. Once this is done, the VMs that host
those resources is indirectly discovered and selected (but this is hidden from the experiments). Decoupling M&S resources from
VMs resembles decoupling OS from hardware within a VM. This virtualization of M&S resources is important because VMs are not
equal since they may advertise different M&S resources. Comparing to existing approaches, discovery, selection and managing in
our approach happens at the level of M&S resources rather than at the level of VMs. In existing approaches, the highest layer is
the VMs management layer (i.e. cloud resources). In this case, VMs are treated as computing powers to execute simulation jobs,
that need then to be scheduled over available VMs with respect to some parameters to balance the load. As can be seen that those
approaches assume that all VMs have the same M&S capabilities, hence there is no need for the discovery stage (as in our case)
since all VMs have the same M&S capabilities. However, in the Cloud, VMs normally support heterogeneous M&S resources that
need to be discovered before being matched to the simulation jobs that they can execute.

(3) Virtual Experiments (VEs): clients devices can view Fog nodes (i.e. that belong to local mini-clouds) as the magic servers that can
setup and execute experiments using various simulation environments. Because these experiments give clients the impression of
conducting simulation over different simulation environments, they are called Virtual Experiments.

The rest of the paper is organized as follows: Section 2 presents relevant related work and compares them to our presented
contributions. Section 3 discusses the Virtual Experiments framework, interactions and API. It also describes how users would use
their experiments over the Fog/Cloud resources. Section 4 describes the M&S resources management. This means how M&S resources
are discovered and organized so that experiments (Section 3) can select compatible M&S resources to execute simulation. Section 5
demonstrates proof of concept cases using privately built Clouds and Fogs using OpenStack [19]. Conclusions are presented in
Section 6.
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2. Related work

Simulation has been used for decades, and one of the starting points was the effort by the U.S Department of Defense (DoD), to use
it for war games purposes in 1950s [17]. As networking technologies developed, simulations have also advanced to reach each other
across geographical areas to collaborate and reuse each other services to solve common problems. Examples of such platforms in the
defense sector are SIMulator NETworking (SIMNET) in 1983 [7], Distributed Interactive Simulation (DIS) standards in 1990s [13],
and the High-Level Architecture (HLA) standard in 1999 [14]. Distributed simulation also progressed outside the defense sector.
Examples of such works are based on the Common Object Request Broker Architecture (CORBA) (e.g. [9]) during 1990s, SOAP-based
Web-services (e.g. [29]), and RESTful-based Web-services (e.g. [4,3]). As REST is the interoperability style that the Web itself uses,
and it addresses resources with URIs and exchanges messages between those URIs via uniform interface (i.e. HTTP methods), in-
teroperability of models and simulations is also improved. Since then, RESTful WS have become popular in various applications,
particularly with the emergence of Cloud computing technology (e.g. [19,23]). Nowadays, Clouds typically exposes their services via
RESTful WS APIs to ease the interoperability of software systems with Cloud services via the Internet.

Despite of the success of Cloud computing for providing and managing computing resources, there are a few issues not solved.
Cloud computing tends to be in centralized datacenters; however, users need to access the Cloud from virtually everywhere. Clouds
need to consider mobility support, geographical locations awareness, service latency, resources allocation, and geographical-location
awareness [6,18,20,32]. To overcome such issues, Cisco introduced the concept of Fog computing in 2012 [6]. It is defined as a “cloud
close to the ground” [6], meaning that we want to move part of the cloud computation closer to the end users. In fact, as suggested by
surveys like [18,20,32], Fog computing should utilize users nearby resources that are usually idle off peak hours. Because of this, we
preferred building our own private clouds based on OpenStack [19].

OpenStack [19] is an open-source cloud operating system software tools that was originally developed by NASA and Rackspace.
The major OpenStack services are Storage, Compute, and Networking each with its own RESTful API. OpenStack is currently supported
by a long list of companies such as AT&T, Ericsson, Huawei, Intel, Rackspace.

2.1. Cloud-based simulation related work

Research in [16,31] showed how to deploy HLA-based simulations on the Cloud as SaaS-oriented frameworks. Others, like
[22,23], deployed HLA-based simulations on the Cloud using containers rather than using virtual machines (VMs), as containers on-
demand provisions are lightweight compared to VMs. This is true if VMs or containers need to be started upon simulation start,
because VMs virtualize the actual computer hardware, but containers only virtualize the operating system.

We also deploy Simulation as Service middleware (servers) on the Cloud; however, our approach is different as we assume that
the M&S capabilities may not be the same on all servers. Before simulating, our Fog servers find the correct server(s) with the
capability to execute the simulation based on end user's configuration. Another difference is that in our case, VMs are viewed as
dedicated servers with M&S capabilities and they need to advertise their M&S capabilities, allowing Fog servers to discover them.

Further, cloud-based scheduling algorithms have been studied by different researchers. For example [12,17] proposes energy
aware scheduling (based on the VMs temperatures) to schedule virtual machines and minimize energy consumption in data centers.
The work in [21] uses Formal Concept Analysis to schedule tasks on VMs, and [23] uses different parameters to schedule containers
on the Cloud (e.g., simulation deadlines) to enhancing quality of service. All these works view VMs (servers) as a pool of processing
units with the same M&S capabilities. In contrast, we structure M&S capabilities in pools (rather than VMs). When a new VM server is
launched, its M&S capability is dynamically detected and added to the M&S pools. Therefore, users can setup experiments on Fog
servers without the need to know how and where the Fog servers will execute the simulation. We call these Virtual Experiments. In
other above related work experiments like [16,31], users are aware of the M&S capabilities locations (and they need to create
experiments on servers with the required M&S capabilities to run their simulations). Further, once the experiment finds the servers
with the required M&S capabilities, they need to select the servers with the least load.

Furthermore, other research like [12,17] use first-fit scheduling, while [8] is based on best-fit scheduling. These scheduling
algorithms try to fit the jobs based on their start/end times. Based on this they find the computing resources to do so. However, in
practice, it is hard to estimate the simulation jobs completion time or the load they add onto the servers, because the simulation will
continue if there are events to execute (which may further generate other events). Thus, this depends on the model that is being
executed and the simulation events generated. For this reason, our approach is to select the least loaded resources at the time of
starting a simulation execution.

2.2. Fog-based simulation related work

Several simulators have been developed with the purpose of modeling Fog computing environments. For example, EdgeCloudsim
[24] simulates Fog servers’ computation and networking capabilities. SimpleIoTSimulator [26] creates Fog test environments with
thousands of sensors and Fog servers. iFogSim [11] simulates Fog computing environments with large number of Fog nodes and IoT
devices.

Other related Fog-based simulations have targeted specific issues. For example, Assila et al. [5] uses simulation to study caching in
the Fog layer for many-to-one matching games between a set of client devices and a set of Fog devices. Further, Wang et al. [30] uses
simulation to study military operations latency and effectiveness when adding a Fog layer between users and the Cloud backbone.
These treat the Cloud as storage resources, which is different from our case, where the collaboration between Fog and Cloud servers
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starts when the simulation starts in an experiment. The experiment then finds the servers with the required M&S capabilities and the
collaboration ends when the simulation is completed. If information is needed about previous simulation runs, they only commu-
nicate with the Fog servers.

Others have built simulators for Big Data collection and processing (motivated by the IoT). For example, Abdelhafidh et al. [1]
proposes a platform to collect and process large numbers of data collected from sensors within a water pipeline monitoring system.
BigDataNetSim [2] models the main components of the data movements in Big Data platforms such as network topologies and
switching/routing protocols. MRSG [15], which is implemented on top of SimGrid [25], is a MapReduce parallel simulator that
produces a large set of data to mimic users’ devices in IoT computing environments. This research could be combined with ours. Big
Data could input substantial amounts of data into experiments when simulating IoT. Our Virtual Experiments could then be used to
prepare and filter data (on the Fog server) before inputting to the actual simulation engine. Likewise, they could process simulation
outputs before sending it to users’ devices. The Virtual Experiments can be viewed as interplay logical units between the user and the
simulation. This interplay data processing is outside the scope of this article, and part of our future research plans.

2.3. Fog/cloud collaboration related work

Table 1 shows a sample of the use of Fog computing as a middle-processing layer between users and Clouds. They all have in
common that Fog nodes do some local processing, and, based on some decision they may forward data to the Cloud. Our work is
different from those as we have simulation experiments that know how to find the appropriate M&S capabilities to run the simulation.
Further, our solution can detect and discover when M&S capabilities are added (or removed).

3. Virtual experiments

Before presenting our collaboration mechanisms, we need to remember that M&S is based on two aspects: the model and the
simulation. A Model is the representation of a real system of interest that captures the necessary information in form of equations or
other non-formal mechanism. The simulation environment (or engine/tool) executes the model. In practice, models can be expressed as
files of some format that a simulation engine knows how to parse and execute. Further, models can also exist as source code of some
programming language that might be compiled with the simulation engine source code before being executed. Regardless how a
model is expressed, the assumption here is that modeling is separated from simulation. Therefore, experiments, in our case, are
created by users with configuration settings, including models that can be executed by compatible simulation environments.

Based on these concepts, this section describes how users conduct their Virtual Experiments over Fog/Cloud resources. Fog
Servers are the entry points for users to setup and configure Virtual Experiments. Virtual Experiments indicate that experiments are
decoupled from M&S environments specifics. This means that users are not concerned with how or where the experiment is going to
find server(s) equipped with the required M&S capabilities that can execute the simulation. Experiments find these servers with the
help of a local component (on the same Fog server), called Scheduler. Schedulers (discussed in Section 4) are responsible for the
overall M&S resources management, discovery, and scheduling.

3.1. Experiments organization and interactions

Fig. 1 shows example of how users run simulations within their experiments. This example shows that users would only access
services via the Fog servers. For example, when User1 starts simulation on experiment E1 (on Server-A), E1 requests the Scheduler
(on Server-A) to find a server. In this case, it obtained Server-B (on the other Fog). Consequently, experiment E1 creates the ex-
periment E3 (on Server-B) with all required data and starts the simulation. Now, E1 is an interplay unit between the user and the
simulation on E3. This means that it would handle all interactions between user and the running simulation. However, when the
simulation ends, E3 is deleted while all previous simulation results are saved in experiment E1. However, when User2 starts a
simulation on experiment E2, E2 requests the Scheduler (on Server-A) to find the servers. In this case, it obtained Server-B and Server-
C (on the Cloud). Accordingly, E6 experiment is created on Server-C and Server-D (on the Cloud). This is a distributed simulation

Table 1
Examples of Fog/Cloud Related work.

Related Work Application Services Fog Functions Cloud Functions

Dubey et al. [10] Collect data from various wearable sensors
used for tele health applications

Processes the collected raw data from monitoring
sensors and converts it into patterns. Also, zip & unzip
files

Database

Stantchev et al.
[27]

Collect data from health monitoring sensors Check data and contact help if an intervention is
needed. Otherwise, forward data to the Cloud

check data and contact help if an
intervention is needed

Zamfir et al. [33] provides a platform for IoT prototyping
health assistive and monitoring
applications

Partial data processing Large data processing

Zhang et al. [34] Home automation Moved some controls from the Cloud to be processed
at local home gateways to enhance users’ privacy

Backups
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partitioned over two servers. In our case, we use the distributed version of CD++, which has been presented in [3]. This shows how
the Virtual Experiment concept can hide the simulation environments details from users. As far as User2 concern, E2 is running on
Server-A. For User3, two experiments are running: E4 on the local Fog server itself, and E5, which is offloaded to Server-D and
executed within experiment E7.

Fig. 2 shows the major steps for starting a simulation on an experiment instance. The figure assumes that the experiment has
already been created with all the required settings, and it is ready to simulate. As the figure shows, in Step #1 the user starts the
simulation by creating the URI…/simulation via HTTP PUT. In Step #2, the experiment asks the Scheduler (on a local server) where to
execute the simulation. As discussed in later sections, the Scheduler knows all M&S resource pools, and knows how to find best
middleware/server to execute the simulation. Step #2 shows that the experiment can request more than one server, based on con-
figuration settings (for example to provide fault tolerance, or to run the simulation in distributed fashion, in which case each portion

Fig. 1. Example of Users Experiments behavior over Fog/Cloud Servers.

Fig. 2. Starting Simulation on Virtual Experiment (VE).
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of the model is simulated on a separate server [3]). Now, if the Scheduler returns the localhost, then the simulation is going to be
executed on the local Fog middleware as a local experiment. In this case, the local server creates a local simulation manager, as shown
in Step #3. Then, in Step #4, the local server starts the simulation, which in turn starts the required simulation environment to
execute the model. However, if the Scheduler returns other servers, the simulation needs to be offloaded to them. In this case, in Step
#5, the local server creates a Virtual Simulation Manager to wrap the simulation, and then in Step #6, it creates an offloading
simulation watchdog that will be checking the simulation execution. After that, in Step #7, the local server starts the simulation by
creating temporary experiments on all those servers. To do so, in Step #8, an experiment unique UUID name is created. Step #9
creates a remote experiment with that unique name, and it submits all required files and settings. Step #10 starts the simulation on all
the remote experiments. In Step #11 the offloading simulation watchdog starts. Finally, when the simulation is completed, the local
experiment retrieves the results (Step #12), deletes other experiments (Step #13), and conducts local cleanup (Step #14).

3.2. Experiments framework and implementation

The experiment is built as a container that wraps all things related to executing simulation for a model. The experiment exposes
certain URIs to allow users to control and manipulate the experiment at all its phases. Fig. 3 shows the experiment's RESTful API and
the states that it usually goes through.

The Experiment API is shown in Fig. 3-left. Users send HTTP requests using the PUT method on the URI (…/RISEaaS/users/{user}/
experiments/{experiment}). This is the main URI for an experiment instance. For instance, URI (…/RISEaaS/users/John/experiments/
FireModel) is the URI used for experiment instance FireModel for user John. As a result, the experiment instance advances to the
Formed state (Fig. 3-right). In this state, a user can submit models and other settings via HTTP POST. Further, the user can delete the
experiment instance via HTTP DELETE on the experiment main URI. The user starts the simulation via PUT on URI (…/{experiment}/
simulation) (Fig. 3-left). This would create the active simulation URI and put the experiment in Simulation state (Fig. 3-right). In this
state, the user can retrieve live results via HTTP GET using URI …/simulation. Further, an active simulation can be aborted via
DELETE on this URI. If the simulation completes successfully, the …/{experiment}/results is created, allowing results to be down-
loaded and replayed later. Users can retrieve results during running simulation via HTTP GET using URI …/simulation. If the si-
mulation ends with an error, the URI …/{experiment}/errors is created.

Fig. 4 shows the design of Java implementation of the VE. The experiment RESTful API discussed in Fig. 3-1 is implemented by
four classes (in Fig. 4): (1) ExperimentRestfulAPI, which handles the HTTP requests to the URI …/experiments/{experiment}, (2)
SimulationRestfulAPI, which handles the HTTP requests to URI …/{experiment}/simulation, (3) ErrorsRestfulAPI, which handles the
HTTP requests to URI …/{experiment}/errors, and (4) ResultsRestfulAPI, which handles the HTTP requests to URI …/{experiment}/
results. Each of those classes contains the methods required to be invoked by the RESTful framework based on the HTTP method in the
HTTP request, as follows: (1) represent() handles the GET method, (2) acceptRepresentation() handles the POST method, (3) re-
moveRepresentations() handles the DELETE method, and (4) storeRepresentation() handles the PUT method. When the simulation starts
(Fig. 2), an instance of SimulationRestfulAPI is created and storeRepresentation() is called. Then, an instance of class VirtualSimula-
tionManager is created, which represents an active simulation. The simulation starts via startSimulationService(), which in turn creates
experiments on other servers and runs the simulations on them as previously discussed.

Fig. 3. Virtual Experiment RESTful API and State Diagram.

K. Al-Zoubi and G. Wainer Simulation Modelling Practice and Theory 101 (2020) 102032

6



4. M&S resources management

As discussed in Section 3, experiments use the local Scheduler to find servers to execute the simulation. Schedulers need to find
servers such that: (1) those servers can execute the simulation, since they are not equal and may support different M&S capabilities,
and (2) servers load should be taken into consideration for performance reasons. To do so, Schedulers manage M&S resources in two
stages: Stage #1: Discover dynamically M&S capabilities and organize them in such way to ease matching experiments to compatible
M&S capabilities. In this stage, similar M&S capabilities are organized in identical pools and made available to Fog servers, easing the
matching process. This Discovery stage is discussed in Section 4.2. Stage #2: Based on the structured resource pools formed in Stage
#1, load-parameters are periodically collected about each pool, and made available to Fog servers, easing the servers’ selection
process. This Selection stage is discussed in Section 4.3.

The overall system architecture must be independent of increasing number of Fog and Cloud servers, hence scalable. Further,
message interactions between Schedulers must also be independent of enlarging the number of participant Fog/Cloud servers. To
solve this problem, Schedulers are structured in hierarchy fashion. Further, resources management interaction messages are only
passed between a Scheduler and its parents/children Schedulers (if any). Root Schedulers (i.e. that are without parents) are the Fog
servers, which are users’ entry points. This Schedulers hierarchical architecture is discussed next.

4.1. Hierarchical architecture and deployment

Each server (middleware) communicates management control messages using their local running components, called Schedulers.
Thus, we could logically consider servers are also structured hierarchically. A typical deployment example is shown in Fig. 5, where
M&S resources are virtualized between two tenants. Tenants are the way to let different organizations to share same physical re-
sources but with complete separate virtual networks. This gives each tenant the impression of owning all physical resources. Tenant A
owns resources on Fog1, Fog2, and Cloud servers 1, 2 and 3. Tenant B owns Fog 3 and Cloud servers 3, 4 and 5. Tenant B users can
access the M&S resources servers on the Cloud via F3-Server1. Tenant A users can access M&S resources via F1-Server1 and F1-Server2
(on Fog 1), and via F2-Server1 (on Fog 2). Both tenants’ servers are completely separated. To keep tenants separated, each tenant
resources are kept in separate XML configurations as described later. For example, Fig. 6 shows two possible deployment config-
uration for the Tenant A resources in Fig. 5.

Fig. 6-1 shows the hierarchy in two levels (for Tenant A resources in Fig. 5): The Fog servers on the top and all other servers with
M&S capabilities at the second level. Even though this configuration is correct, placing Fog servers on top of all resources have some
issues, like communicating management control messages with too many servers (particularly when those children servers exist in
different Fogs and Clouds). In practice, administrators would place some intermediate nodes within the hierarchy to avoid having
such issues. Fig. 6-2 shows an equivalent structure with a new node to manage the three Cloud servers, called Cloud-Node. It further
added a new node to manage the Fog 1 two servers, called Fog1-Node. The three Fog servers in Fig. 6-2 can still discover M&S
capabilities as in Fig. 6-1, but with using fewer control messages. As discussed in Sections 4.2 and 4.3, Schedulers only exchange
management control messages with their parents and children for better scalability. For example, if we want to give some server
access to Fog 1 resources, we then make it parent for Fog1-Node. This is done by sending the XML deployment message (Fig. 7) via
POST (Table 2) to Schedulers to configure them with their parents and children. As previously mentioned, each server has this

Fig. 4. Virtual Experiment (VE) Context Implementation.
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Fig. 5. Deployment Example of Fog/Cloud Servers with Two Tenants.

Fig. 6. Hierarchical Structure for Tenant-A Resources deployed in Fig. 5.
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Scheduler component.
The XML description in Fig. 7 shows a snippet of a typical deployment configuration for two servers. Scheduler-1 has only two

children Scheduler-2 and Scheduler-3. Scheduler-2 has two children Scheduler-4 and Scheduler-5, and one parent Scheduler-1. This
message typically passed to the root node, which then passes it throughout the hierarchy. However, this message can also be sent to
configure single node. To make sure there are no loops, each node uses operation “checks for loops”, in which each parent in the
hierarchy sends a message with a unique UUID through their children via HTTP GET. After that, if it gets this message back from one
of its parents, it reports to the admin that it sits in a loop with that parent.

Table 2 describes the RESTful API and operations for Schedulers. As discussed earlier, each server has a single Scheduler. We have
already discussed the first two operations in this subsection. The last three operations will be discussed in more details in Sections 4.2
and 4.3.

4.2. M&S resources discovery

The Advertise Resources operation (API in Table 2) is used to organize M&S resources in pools, allowing Fog servers to know how to
reach those resources. This starts when a server with M&S capabilities is added to the hierarchy or its M&S capabilities change. The
Scheduler on that server advertises its resources and passes them up in the hierarchy. The parents merge advertised resources with
similar resource pools, if any. Otherwise, they create new resource pools, and advertise the newly created pools to all parents. This is
repeated until it reaches the root servers, which are the Fog servers where users access services, as seen in Fig. 8.

Fig. 8 example shows how to build resource pool channels. The figure shows a hierarchy of seven servers. We only show the
Schedulers components, since they do the actual work. In this example, the leaf Schedulers have M&S capabilities: Scheduler #4 and #5
can run simulations on environments SimA and SimB, Scheduler 6 is only enabled with SimA, and Scheduler #7 is only enabled with
SimB. The intermediate servers with Scheduler #2 and #3 are used for resource management organization for better scalability as
discussed in Section 4.1. It is worth noting that intermediate nodes could also be used as Fog servers to allow user devices to access
the M&S resources. The root server (Scheduler #1) is a Fog server, allowing users to access the M&S resources. When a leaf Scheduler
is added or its M&S resources change, it sends an advertisement message via POST method to all its parents. For example, leaf
Scheduler #4 (in Fig. 8) sends parent Scheduler #2 advertisement message like the following:

Fig. 7. Deployment Configuration Example.

Table 2
Simulation Scheduler RESTful API and Operations.

URI …/RISE/manage/Scheduler
Operation HTTP Method Description

Deployment POST Hierarchical configuration description (Fig. 7). It is Sent to Schedulers to inform them with their children (if any) and
their parents (if any).

Check for Loops GET Checks for loops in the configuration structure. Query variable “?operation=Checkloop” is attached to the URI.
Advertise Resources POST Sent from a child to all parents to advertise its M&S resources capabilities (discussed in Section 4.2 - Fig. 8).
Compute Load GET Sent from parents to children to compute Processing Power for all advertised resources (discussed in Section 4.3 –

Fig. 9). Query variable “?operation=compute” is attached to the URI.
Get Servers GET Find best possible RISE middleware to offload simulation onto them. Query variable “?operation=getServer” is

attached to the URI. This always returns one server. However, to return more than one server, it needs to be specified
with variable server as follows “?operation=getServer&server=##”
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<advertisement><resources>
<resource><name>SimA</name></resource>
<resource><name>SimB</name></resource>
</resources></advertisement>
When parent Scheduler #2 (in Fig. 8) receives this message, it creates a resource pool object with resources SimA and SimB. It then

passes it to parent Scheduler #1, which also creates a resource pool object in a similar way. Consequently, a channel is created
between root Scheduler #1 and the actual resources location at Scheduler #4. When leaf Scheduler #5 advertises its resources {SimA,
SimB} to Scheduler #1, it simply connects Scheduler #5 to the existing resource pool. This is because the advertised resources match an
existing pool channel at Scheduler #1. In this case, nothing is passed up in the hierarchy. Now, root Scheduler #1 views resources
located at Scheduler #4 and #5 as one pool. In contrast, Scheduler #2 creates two resource pools when receiving children adver-
tisements and passes both to parent Scheduler #1. This is because children advertisements do not match, as they are heterogeneous.
Finally, the Scheduler #1 has three resource pools: (1) {SimA, SimB}, (2) {SimA}, (3) {SimB}. Now Scheduler #1 knows how to
discover and match resources. For example, if a model can only execute on SimA, then the first and second pools will only be
considered for server selections.

4.3. M&S resources selection stage

The discovery stage discussed in Section 4.2 allows Schedulers to match experiments to compatible M&S resources. In this section,
we discuss the selection process from those found matched resources. For example, the root Scheduler #1 (Fig. 8) needs to select the
best pool out of the matched pools. This is needed to keep the load balanced between M&S resource. To do so, root Schedulers need to
know more information about each resource pool channel load. This information is collected via the Scheduler “Compute Load”
operation.

The “Compute Load” operation is summarized as follows: the Load Compute message (Fig. 9) is periodically sent from root
Schedulers to all children until it reaches leaf nodes. These are usually the ones with M&S capabilities and can run simulations. Once
the compute message reaches the leaf Schedulers, they compute their local processing power and utilization and return this in-
formation back to the parents. We can consider many factors to compute the processing power and utilization: CPUs available,
Memory, and Disk storage. In our case, we made it as a policy that can be configured by system administrators. However, by default
we considered the number of logical processors and their utilization.

Consider the example in Fig. 9. As a precondition, suppose resource pools channels are already structured as previously discussed
(in Fig. 8 in Section 4.2). Now, let us assume that leaf nodes in Fig. 9 are as follows: Scheduler #4 (cpu = 2, utilization = 20%),
Scheduler #5 (cpu = 4, utilization = 25%), Scheduler #6 (cpu = 8, utilization = 75%), and Scheduler #7 (cpu = 8, utiliza-
tion = 50%). Thus, when Scheduler #5 gets the compute operation, it responds back to parent Scheduler #2 {cpu = 4, utiliza-
tion = 25%} as shown in Fig. 10.

However, because Scheduler #2 merges its children resources in one pool channel, it needs to merge both of its children responses
before responding back to its parent Scheduler #1. This is because both of children channels are mapped by Scheduler #2 to one

Fig. 8. M&S Resource pools and Advertisements.
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channel. The utilization of the merged channel is calculated as follows:

=
=

cpu u cpu TcpuU 1 * / *100%
pool

n

1

Where U is the utilization of all merged channels, cpu is the number of CPUs in a channel, u is a single channel utilization reported
from a child. Tcpu is the total of CPUs for all channels. Based on the above, Scheduler #2 calculates the utilization for the merged
channel as follows: U = (1- ((2 – 0.2 * 2) +(4 - 0.25 * 4))/6) *100% = 23%. It then responds back to parent Scheduler #1 with
information {cpu =6, utilization = 23%} with the XML message format in Fig. 10. Further, Schedulers calculate the processing
power for all of resource pools and keep them sorted according to their processing power. Resource pool processing power is
calculated as follows:

=ProcessingPower cpu cpu u*

Where cpu is the CPU count of the resource pool, u is the resource pool current utilization.
For example, Scheduler #1 in Fig. 9 has three pools with: (1st pool) {cpu: 6, utilization: 23%}, (2nd pool) {cpu: 8, utilization:

75%}, and (3rd pool) {cpu: 8, utilization: 50%}. Thus, their processing powers are: (1st pool = 4.62), (2nd pool = 2), and (3rd
pool = 4). This means first pool is with the least load, then third pool, then second pool.

At this point root/Fog servers (like Scheduler-1) have all needed information to discover matched servers with least loads. To do
so, the Fog server Scheduler (Scheduler #1 in our example), invokes Get Server operation (see API in Table 2). As discussed previously,
VEs (in Fog servers) need to find servers with the simulation environments that can execute the subject model. Thus, each resource
pool processing power and utilization information always needs to be available for Fog servers (Fig. 9). This is done as follows.

When Get Server is invoked by the Fog/root Scheduler, it performs the following (1) Get set of the resource pools with the required
M&S capabilities, (2) Select from this matched resource pools, the pool with least load (i.e. highest processing power), (3) Send Get
Server message down the hierarchy through the child with least loaded resource pool. This will eventually reach the actual servers
and return the required information. Once servers are found, the connection is directly established between those servers and the Fog
server so that its subject experiment can use them to run simulation.

Therefore, the above three steps will be repeated downward the hierarchy until a leaf node is reached. This leaf node is the

Fig. 9. M&S Resources Load Computations.

Fig. 10. XML Description for Resource Pool Channel Computation.
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selected server with the required capability. Therefore, it will respond with its information in XML format to its parent. The parent
will then push this message to its parent until it reaches the Fog server (on the top), which then passes this information to the VE.
Note that the leaf server might reject the request, if it is heavy loaded (in our case, utilized more than 90%). In this case, the Fog
server may launch another VM with the suitable server image, or simply reject the simulation start request. This is based on system
admins configuration. It is worth noting that load balancing is not our main objective; however, this selection stage is a necessary
stage in the overall Fog/collaboration workflow cycle.

4.4. Implementation

Fig. 11 shows the simulation Scheduler context implementation, which is the component responsible for the above-discussed M&S
resources management. This Scheduler component exists in every server. Those Schedulers exchange control messages via RESTful
API to discover and collect information about those resources.

Upon HTTP request receipt with the Scheduler URI, the server allocates a thread for the incoming request and creates an instance
of class SchedulerRestfulAPI (Fig. 11). Scheduler only supports the GET and POST HTTP methods. Thus, if it is a GET request, the
HTTP framework invokes method represent(). On the other hand, if it is a POST request, method acceptRepresentation() is then
invoked. Those two methods will then invoke the proper operation from class SimScheduler based on the API previously described in
Table 2. Class SimScheduler is singleton where only one instance can only exist in a single middleware server. This class contains the
Scheduler operations that we explained above throughout Section 4. Method computeLoad() is invoked periodically within a thread to
go downward in the hierarchy to get resource pools current utilizations (see Fig. 9). Method advertise() is used to pass M&S resources
description upward in the hierarchy, which causes resource pools channels to be constructed along the way (see Fig. 8). Method
getServers() allows experiment to find a server (and optionally redundant servers) to run the simulation, which could be on the
localhost or a remote server to offload simulation onto it (see Fig. 2). Class SimScheduler also keeps track of all of children resource
pools and their corresponding parents’ children pools. ClassMSResourcesPool defines a resource pool while class Node defines a server
(i.e. that is another Scheduler on that server). Class MessageDispatcher is used to dispatch HTTP messages (within separate threads) to
other servers. Class VirtualSimulationManager manages active simulation within a VE, as previously discussed in Fig. 4.

5. Case study

This section demonstrates the proposed ideas using a real Fog and Cloud system with various physical and configuration setups.
We will take the following points into consideration:

• Deploy different Fog/Cloud physical setups with homogeneous/heterogeneous hardware, various VMs computing capabilities,
and various M&S capabilities.
• Deploy the Fog/Cloud with different deployment configurations. This shows how M&S resources discovered, organized, virtua-
lized and separated. This kind of change reconstructs the discovered resources onto pools so that the Fog servers can find and use
them, as previously discussed in Section 4.1.
• Ensure that experiments load will be spread over compatible servers. This also means that the servers that cannot execute ex-
periments should not get those simulation jobs. We will change some servers M&S capabilities to show how the resources are

Fig. 11. Snippet of Simulation Scheduler Context Implementation.
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reconstructed by observing where the simulations were executed.
• Explore performance, particularly when users can run their simulation on their local Fog servers comparing to the Cloud.

We build three different Fog/Cloud physical setups, as shown in Figs. 12–14. In the first physical setup (shown in Fig. 12), we built
two physical Clouds: one represents the Fog micro Cloud, built over one physical machine with one virtual machine (VM). The other
represents the Cloud backbone, built over three physical machines with four allocated VMs called, Cloud-Server-A1, Cloud-Server-A2,
Cloud-Server-A3, and Cloud-Server-A4. The second physical setup (shown in Fig. 13) is similar to the first physical setup (Fig. 12), but
with different hardware capabilities. However, the third physical setup (shown in Fig. 14) is built with two Fogs and one Cloud, which
built with more heterogeneous VMs and hardware capabilities, comparing to the first and second setups. Further, the user device is a
laptop communicating via a typical household Wi-Fi with the Fog server. Finally, the Cloud resources are placed about 30 km from

Fig. 12. First Physical Fog/Cloud Setup ― Deployed VMs alongside their Hardware Configuration.

Fig. 13. Second Physical Fog/Cloud Setup ― Deployed VMs alongside their Hardware Configuration.
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the Fog within the same city.
As discussed in Section 4.1, M&S resources are deployed in hierarchal structure. As a result, Figs. 15 and 16 show the used

deployment configurations for the above three physical setups (shown in Figs. 12–14). Fig. 15-1 and 15-2 are the used deployment
configurations for the first physical setup in Fig. 12. Fig. 15-1 shows that the Fog server Fog-Server-A as the parent node to all Cloud
servers. The second configuration in Fig. 15-2 is more realistic, which uses Cloud-Server-A1 as Cloud gateway for the Fog. Similarly,
Fig. 15-3 and 15-4 provide the deployment configuration on top of the second physical setup (in Fig. 13). Thus, the only difference is
the underlying physical hardware and computing power, but with similar deployment configuration. Fig. 16 shows three config-
urations over the third physical setup (in Fig. 14). This physical setup is different from the previous two setups for having two Fogs
with heterogeneous VMs capabilities and heterogeneous computing hardware. Fig. 16-1 shows how M&S resources can be split
between two tenants. Each tenant (e.g. organization) gets the impression of using all the capabilities by itself while sharing those
resources with other tenants. Fig. 16-2 shows how to combine the two tenants’ resources (in Fig. 16-1) together so that they become
one tenant. This done by making Fog-Server-B and Fog-Server-A parents for Server-C1 and Cloud-Server-C5 respectively, as discussed in
Section 4.1.

Table 3 presents different use cases to experiment with the proposed concepts, using different combinations of Fog/Cloud physical
setups and deployment configurations. Those uses cases mainly focus on enabling the servers with different M&S capabilities
combinations. In this way, we can run use cases over different deployments with different M&S capabilities. This would show how the
system is able to manage resources discovery and selection.

It is worth noting that since our use cases focus on what happens after starting the simulation within experiments, the user created
and prepared 60 equivalent experiments on each of the Fog servers with the complete settings. They all have same settings, use the
same model, and being executed on CD++. This is needed to make the comparison between simulation runs as fair as possible. All
these experiments used a forest fire model, which studies the fire propagation in forests. As previously stated, the client side is not in

Fig. 14. Third Physical Fog/Cloud Setup ― Heterogenous VMs and Hardware.

Fig. 15. Used Deployment Configuration for the First & Second Physical Setups in Fig. 12 & Fig. 13.
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our focus in this presented work. However, client devices need to retrieve simulation results (e.g. XML, text, etc.) from experiments
(via Fog servers) to be visualized locally. Fig. 17 shows an example of how clients would view fire model retrieved simulation results.

Fig. 18 shows a case where the simulation of 60 experiments started randomly over a period of ten seconds. Fig. 18-1 applies Use
Case #1 while Fig. 18-2 applies Use Case #2 in Table 3. The only difference between these two use cases is the underlying hardware
(i.e. Use Case #1 uses the physical setup in Fig. 12 while Use Case #2 uses the physical setup in Fig. 13). In this case, the Fog servers
cannot run the simulation locally, since they did not advertise CD++. Further, the simulation for 60 experiments are expected to
spread over the four Cloud servers. This is because all those servers can execute the CD++ simulation, as they advertised this
capability earlier. This case was repeated over 100 rounds, though, each run, in Fig. 18, is an average of 10 actual runs. As results
show in Fig. 18, the experiments simulations were reasonably spread over the four servers. Further, Fig. 18-1 and 18-2 showed similar
results regardless of the difference of the underlying hardware. This is because VMs computing power and M&S advertised cap-
abilities are the same, hence hiding the hardware heterogeneity. Furthermore, the variation on the number of experiments executed
on servers is mainly because of the load status at the time of servers’ selection. Further, servers load may not always be related to
simulation, since they also need to handle other background processes. The main point of this situation is that the Fog servers’
experiments were able to find and select the compatible servers. This means the resources pools were structured correctly and
correctly made available to the Fog server.

The above discussed cases conditions in Fig. 18 are repeated in Fig. 19, but with different hierarchical configuration deployment
and M&S capabilities. Fig. 19-1 applies Use Case #3 while Fig. 19-2 applies Use Case #4 in Table 3. In this new changed configuration,
Cloud-Server-A1 (Fig. 15-2) and Cloud-Server-B1 (Fig. 15-4) are now made intermediate Schedulers without any M&S capabilities (i.e.
cannot run simulation). Consequently, new resource pools will be constructed. In this configuration, the experiments simulations are
expected to be spread over the three cloud servers (i.e. that means no simulation will be executed on the Fog and intermediate
servers). As the results show in Fig. 19, the experiments simulations were executed over the expected servers. This case findings, in
Fig. 19, support the previous case findings in Fig. 18. This is because they are same, but with different deployment and M&S
capabilities configuration. Further, Fig. 19-1 and 19-2 showed similar results regardless of the difference of the underlying hardware,
hence above layers hid this hardware heterogeneity. Furthermore, this case results show that the overall Fog/Cloud architecture
reorganized itself dynamically based on the configuration change. This is important to prove because in practice configuration
changes dynamically by system administrators.

To further explore the overall system reaction to dynamic changes, the case in Fig. 20 explores the case when servers advertise
heterogenous M&S capabilities. This means experiments need to find the servers that able to execute their simulations. To do so, since

Fig. 16. Used Deployment Configurations for the Third Physical Setup in Fig. 14.
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our experiments require CD++ to run their simulation, we made Cloud-Server-A4 (Use Case #5 in Table 3) and Cloud-Server-B4 (Use
Case #6 in Table 3) advertise dummy M&S capability (to be different from CD++). This means that no CD++ models can be
executed on these two servers. On the other hand, simulation should be able to execute on the other servers that had advertised CD+
+ capability. As expected, Fig. 20-1 (i.e. that applies Use Case #5 in Table 3) shows how experiments were spread over Cloud-Server-
A2 and Cloud-Server-A3. However, no experiments have run on Cloud-Server-A4, since it does not match experiments requirements (to
execute on CD++). This case findings support the same findings of the previous cases in a sense of spreading experiments simulation

Table 3
Different M&S Capabilities over Different Deployment Configuration.

Use Case # Servers (VMs) M&S Capabilities Physical Setup Deployment
Configuration

Results

1 Fog-Server-A None First Setup
(Fig. 12)

Fig. 15-1 Fig. 18-1

Cloud-Server-A1, Cloud-Server-A2, Cloud-
Server-A3, Cloud-Server-A4

CD++

2 Fog-Server-B None Second Setup
(Fig. 13)

Fig. 15-3 Fig. 18-2

Cloud-Server-B1, Cloud-Server-B2, Cloud-
Server-B3, Cloud-Server-B4

CD++

3 Fog-Server-A None First Setup
(Fig. 12)

Fig. 15-2 Fig. 19-1

Cloud-Server-A1 None (i.e. used as gateway to M&S
cloud resources)

Cloud-Server-A2, Cloud-Server-A3, Cloud-
Server-A4

CD++

4 Fog-Server-B None Second Setup
(Fig. 13)

Fig. 15-4 Fig. 19-2

Cloud-Server-B1 None (i.e. used as gateway to M&S
cloud resources)

Cloud-Server-B2, Cloud-Server-B3, Cloud-
Server-B4

CD++

5 Fog-Server-A None First Setup
(Fig. 12)

Fig. 15-2 Fig. 20-1

Cloud-Server-A1 None
Cloud-Server-A2, Cloud-Server-A3 CD++
Cloud-Server-A4 Dummy (i.e. no CD++ simulation

can run on it)
6 Fog-Server-B None Second Setup

(Fig. 13)
Fig. 15-4 Fig. 20-2

Cloud-Server-B1 None
Cloud-Server-B2, Cloud-Server-B3 CD++
Cloud-Server-B4 Dummy (i.e. no CD++ simulation

can run on it)
7 Fog-Server-A,

Fog-Server-B
None Third Setup

(Fig. 14)
Fig. 16-1, & Fig. 16-2

Cloud-Server-C1,
Cloud-Server-C5

None (i.e. used as gateway to M&S
cloud resources)

Cloud-Server-C2, Cloud-Server-C3, Cloud-
Server-C4,
Cloud-Server-C6, Cloud-Server-C7, Cloud-
Server-C8

CD++

Fig. 17. Example of Client-Side Simulation Snapshots for Fire Propagation on top of Google Map.
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over the expected servers with CD++ capabilities. Fig. 20-2, which applies Use Case #6 in Table 3, also shows similar findings as
Fig. 20-1 since both use the same software setups but with different underlying hardware. In addition, the results (in Fig. 20) show
that M&S resources were dynamically and correctly restructured to allow the Fog server to find the compatible servers. This also
shows that Cloud-Server-A4 and Cloud-Server-B4 were excluded from the selection process, hence no simulation was executed over
there. This is important in a sense that incompatible servers are not even considered in the servers’ selection process.

Use Case #7 in Table 3 presents more realistic setups comparing to the above discussed cases thus far. The physical setup (Fig. 14)
is built from two Fogs and a Cloud that is constructed from VMs with mixed computing capabilities on top of heterogeneous

Fig. 18. Running 60 Experiments Over Four Compatible Servers (Use Case #1 & #2 in Table 3).

Fig. 19. Running 60 Experiments Over Three Compatible Servers (Use Case #3 & #4 in Table 3).

Fig. 20. Running 60 Experiments Using Heterogeneous M&S Resources (Use Case #5 & #6 in Table 3).
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hardware. The first real life scenario to discuss is the case of separating tenants (e.g. organizations) resources from each other while
they still share the underlying clouds capabilities. To do so, Fig. 16-1 deployment configuration split M&S resources over two tenants.
The first tenant uses the deployment in Fig. 16-1(left) and access the resource via Fog-A, while the second tenant uses Fig. 16-1(right)
and access resources via Fog-B. Based on this, Fog-A will only see the first tenant resources in Fig. 16-1(left), hence can only execute
simulation over those resources. Similarly, Fog-B can only access resources in Fig. 16-1(right). This is shown in Fig. 21.

Fig. 21-1 shows the simulation execution of experiments that were sent via Fog-A; hence they will only be executed over the first
tenant servers (i.e. Cloud-Server-C2, Cloud-Server-C3, and Cloud-Server-C4). As also can be seen (in Fig. 21-1) that the second tenant's
servers are not being used since they are not owned by the first tenant. In contrast, Fig. 21-2 shows that simulation is executed over
the second tenant servers (i.e. Cloud-Server-C6, Cloud-Server-C7, Cloud-Server-C8) since the requests came via Fog-B. Yet again, in this
case the first tenant's servers are not being used (in Fig. 21-2) since they are not owned by the second tenant. On the other hand, when
combine both tenants’ resources in a single combined tenant (as explained earlier in Fig. 16-2), all of the resources will then be used
regardless of their original access (from Fog-A or Fog-B), as shown in Fig. 21-3. Further, the results show that some servers have been
put to work more than others. This is because the servers computing capabilities are different from each other, hence the work is
almost proportionate to their computing capabilities. For example, in Fig. 21-2 Cloud-Server-C8 executed the simulation of around
50% (i.e. 30 out of 60) of all experiments comparing to the Cloud-Server-C7 that executed around 17% (10 out of 60) of all ex-
periments. This argument applies to all results in Fig. 21. The variation between different runs of same servers are usually related to
servers’ background load (that may not be related to simulation) at the time of their selection, as discussed previously.

Thus far we used fog servers as only access points to the cloud resources. However, fog servers can also advertise M&S resources,
hence can run simulation locally (like any other servers) without even going to the cloud. Fig. 22 compares between a simulation
running on the fog and on the cloud in terms of the user response time, which is measured by the Round-Trip-Time (RTT). RTT is the
time it takes a client device to retrieve results (or read values) from an active simulation (within an experiment). To do so, we
repeated Use Case #1 in Table 3, but while enabling the fog server to advertise the CD++. This means the fog server in the physical
setup in Fig. 12 can now run CD++ simulation as well. We then ran two simulations in parallel one on the fog server and the other
on the cloud so that we can compare between their response times (with respect to the client device). The message was to make the
client device to send a simple message to ongoing simulation to read the current simulation time. The sending of this message was
repeated 100 times. Each Round Trip Time (RTT) shown on the figure is an average of ten times of actual sending. The results are
shown in Fig. 22. According to our system settings and conditions, the cloud response time to users was about two to four times larger

Fig. 21. Tenants M&S Resources Separation and Merging (Use Case #7 in Table 3).
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than the Fog response (Fig. 22). The difference is mainly due to networking latency since both of those simulations are equal in terms
of computing power and experiment settings. However, in practice, we believe users latency is expected to be much better than our
findings here. This is because the cloud server was not running under heavy load (i.e. it was running single simulation like the Fog
server). Further, cloud resources may not be sitting close to each other within the same city as in our case. Therefore, many factors
can play a role in affecting users response time.

6. Conclusions

We proposed complete Fog/Cloud collaboration architecture/mechanisms to conduct M&S experiments. Complete in a sense of
having all required steps to allow Fog/Cloud resources to cooperate with each other to conduct simulation experiments. The proposed
experiment is decoupled from M&S resources specifics, hence called Virtual Experiments (VEs). This is because in practice Cloud
resources may advertise different M&S resources. Therefore, a VE can virtually simulate any model, as soon as it can find a simulation
environment that can execute that model. VEs decoupled experiments framework from M&S specifics. Thus, VEs took virtualization
to the level of the M&S experiment itself. This can be powerful concept toward enhancing M&S within the Fog/Cloud computing
technology where resources heterogeneity is a fact rather than an assumption. Further, our VE proposal is still in compliance with the
Cisco Fog Computing architecture. In this architecture, end users enter deployed services via Fog servers, hence users create their
experiments on the Fog servers. This means Fog servers should have global knowledge about the deployed M&S capabilities. This
knowledge should enable VEs (on Fog servers) to find M&S environments that can simulate the model. Further, this knowledge should
enable VEs to select the best servers (with those equipped capabilities) to run the simulation. To enable VEs with these requirements,
we further proposed full set of M&S resources management algorithms. This allowed M&S resources to be discovered and organized
dynamically in form of resource pools, since in practice events happens dynamically. We then allowed computing status information
to be collected about those discovered resources. This allows VEs to select best discovered resources servers. To prove presented
concepts, we have built our private Fog and Clouds to put the presented ideas into demonstration. We further presented several cases
with different physical setups, deployment configurations and M&S capabilities.
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